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Abstract

Aim: This study aims to synthesize evidence on nurses’ involvement in artificial
intelligence research for managing falls in older adults.

Background: Artificial intelligence techniques are used to analyse health datasets to
aid clinical decision making, patient care and service delivery but nurses’ involvement
in this area of research for managing falls in older adults remains unknown.
Evaluation: A scoping review was conducted. CINAHL, the Cochrane Library,
Embase, MEDLI and PubMed were searched. Results were screened against inclusion
criteria. Relevant data were extracted, and studies summarized using a descriptive
approach.

Key Issues: The evidence shows many artificial intelligence techniques, particularly
machine learning, are used to identify falls risk factors and build predictive models
that could help prevent falls in older adults, with nurses leading and participating in
this research.

Conclusion: Further rigorous experimental research is needed to determine the
effectiveness of algorithms in predicting aspects of falls in older adults and how to
implement artificial intelligence tools in gerontological nursing practice.

Implications for Nursing Management: Nurses should pursue interdisciplinary collab-
orations and educational opportunities in artificial intelligence, so they can actively
contribute to research on falls management. Nurses should facilitate the collection of
digital falls datasets to support this emerging research agenda and the care of older
adults.
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1 | INTRODUCTION

Falls are the second leading cause of unintentional injury-related mor-
tality worldwide, after road traffic injuries. It is estimated that there
are 37.3 million severe falls annually that require medical attention, of
which 684,000 are fatal (World Health Organization, 2021). Falls can
occur for many reasons. Biological factors include age, gender and
physical health problems such as orthostatic hypotension, decreased
visual acuity, impairments in gait, balance and cognition among others
(Peltzer et al., 2013). Socio-economic risk factors associated with
higher likelihood of a fall can encompass an individuals’ educational
level, while behavioural aspects can include actions such as consuming
excessive amounts of alcohol or taking certain medications. Falls can
also be attributed to environmental risk factors such as difficult stairs,
poor lighting and slippery or uneven surfaces both indoors and out-
doors (Jiang et al., 2019). While many falls are nonfatal, bruising and
lacerations, head injuries and fractures can inhibit mobility and cause
long-term physical and mental health issues (Ganz & Latham, 2020).
Around 40% to 60% of falls lead to injuries, 30% to 50% of these
being minor, 5% to 6% major (excluding fractures) and 5% fractures.
Up to 1% of falls in older people result in a hip fracture. Injuries are
the fifth most common cause of death in older people and falls are
the most common cause of injury-related death in persons over
75 years (Kenny et al, 2012; World Health Organization, 2021).
Furthermore, psychological complications, such as a fear of falling, can
also compromise the independence of older adults, limit their daily
activities and lead to a dependency on formal and informal care
(Schoene et al., 2019).

Falls also impact the provision of health services. More than €25
billion is spent in falls related health care costs in the European Union
each year, expenditure that is set to increase to approximately
€45 billion by 2050 due to ageing populations across the continent
(Turner et al., 2015). Furthermore, Hartholt et al. (2012) examined the
spectrum of costs associated with falls in the Netherlands including
family physician consultations, hospital stays and outpatient visits,
long-term care and home care costs and found the mean cost per
fall was €9370. This figure was higher for women (Bowen &
Mason, 2012) than men (Waters et al., 2009) and increased with age,
with patients 85 years and older who had fallen costing more than
those aged 65-69 years. Similarly, in the United States, fall-related
injuries result in 2.8 million emergency departments visits each year,
along with 800,000 hospital stays (Bergen et al., 2016), costing up to
$49.5 billion US dollars annually (Florence et al., 2018).

Managing falls can be addressed in a number of ways.
Preventative strategies can involve removing hazards in home and
hospital environments and providing assistive modifications
(e.g., shower chairs or handrails), or reviewing footwear, medications,
cognition and vision (Leung, 2021). However, early identification of
at-risk individuals can be difficult, given that many factors can
contribute to a fall particularly among older age groups. While a
multidisciplinary approach is often adopted, nurses undertake a lot of
the day-to-day work in falls prevention by gathering and interpreting

fall-related paper-based and digital data (Johnson et al., 2011). The

use of technologies to detect and reduce falls like depth cameras,
floor sensors and wearable devices with accelerometers is also
increasing (Wang et al., 2020), while digital programmes, exergames
and robots are being used to improve gait, balance, mobility and
strength (Stanmore et al., 2019). Nurses are often involved in imple-
menting these types of interventions with at-risk older adults in both
hospital and community settings.

1.1 | Attificial intelligence (Al)

Al is an emerging technological trend that is being used in falls
management and encompasses a range of advanced computational
techniques. Although many definitions exist, a recent high-level expert
group on Al described it as ‘software (and possibly also hardware)
systems designed by humans that, given a complex goal, act in the
physical or digital dimension by perceiving their environment through
data acquisition, interpreting the collected structured or unstructured
data, reasoning on the knowledge, or processing the information,
derived from this data and deciding the best action(s) to take to
achieve the given goal. Al systems can either use symbolic rules or
learn a numeric model, and they can also adapt their behaviour by
analysing how the environment is affected by their previous actions’
(Samoili et al., 2020). Contemporary forms of Al such as machine
learning (e.g., supervised, unsupervised and reinforcement learning),
natural language processing, fuzzy logic and expert systems among
others are being developed and tested to help predict, prevent and
detect falls (Ng et al., 2021). A recent systematic review of machine
learning trends for fall detection and prevention found 33 studies,
most of which used datasets from wearable and sensor devices and
were tested on younger participants in controlled laboratory settings
to build predictive models (Usmani et al., 2021). However, this review
included only machine learning, excluding other Al domains and
included studies from only three bibliographic databases (Google
Scholar, IEEE Xplore and Science Direct), missing key sources of
biomedical, health and nursing research. Additionally, nurses as a key
professional group involved in falls management were not identified
in the review and few clinical implications were presented. Further-
more, a number of reviews of Al in nursing encompass all areas of
practice but do not report nurses’ contribution to this specific area of
research and detailed descriptions of falls related studies are missing
(O’Connor et al., 2022; Seibert et al., 2021; von Gerich et al., 2022).
Hence, a review that focuses on nurses’ involvement in research on Al
for falls management in older adults is warranted, to understand what
advanced computational techniques are employed to try to improve
falls management in older adult care, and how the nursing profession

contributes to this area of research and practice.

2 | METHODS

The review aimed to identify and summarize studies on nurses’

involvement in Al-based falls research and the potential impact these
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advanced computational approaches may have on the care of older
adults. The review was registered on the OSF Registries (https://
www.cos.io/products/osf-registries) and the Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension for Scop-
ing Reviews (PRISMA-ScR) Checklist was followed (see Appendix S1).

21 | Search strategy and screening

Several scoping searches were undertaken to identify search terms
relevant for Al, falls, older adults and nursing. Relevant MeSH terms,
Emtree terms and subject headings were also added. The term ‘logis-
tic regression’ was not included for pragmatic reasons due to the lim-
ited time and resources available to undertake the review, although
some applications of this type of probability modelling are considered
forms of Al (Beam & Kohane, 2018). Two separate searches were run
across five bibliographic databases, that is, CINAHL (EBSCOhost), the
Cochrane Library, Embase, MEDLINE (Ovid) and PubMed Central. The
first, broad search was run on 10 November 2021 and encompassed
terms for Al, falls management and older adults (e.g., ‘aging’, ‘older
adult®, ‘artificial intelligence’, ‘machine learning’, ‘fall*> and ‘acciden-
tal falls’) to help identify pertinent literature that may involve nurses
in its design or conduct (Appendix S2). Two thousand and twelve
results were found and downloaded to Rayyan software (https://
www.rayyan.ai/), with duplicates removed before screening. Studies
were screened according to title, abstract and full text by two
reviewers working independently. The second search was run on
5 February 2022 and focused specifically on nursing within the Al for
falls management domain (Appendix S2). One hundred and thirty-
seven results were returned which were subsequently screened by
title, abstract and full text via Rayyan by two reviewers working inde-
pendently (Figure 1). Consensus discussion helped resolve any dis-
agreements during screening. Inclusion and exclusion criteria were
developed using the Population, Intervention, Comparator, Outcome,

Setting/Study and Timeframe framework (Table 1).

2.2 | Data extraction and analysis

Microsoft Excel was used to create a data extraction template that
was adapted from the Cochrane Effective Practice and Organisation
of Care Review Group data collection checklist. The data extracted
from each study included the first author, year, country, research
aims/objectives, study design, setting, data collection, participants, Al
intervention and results/outcomes (Table 2). The included studies

were summarized using a descriptive approach.

3 | RESULTS

Fourteen empirical studies were included, published between 2010
and 2021. Four were located in South Korea and four in Japan, with
one study being conducted in Taiwan, Turkey, Ireland, France,
Germany and the United States (Figure 2). The study designs were all
quantitative in nature, using retrospective case-control or cohort
designs, with some not explicitly reporting the methodology used.
Nine studies employed secondary analysis on existing falls related
datasets from electronic health records, chart reviews, clinical guide-
lines or published scientific literature, web-based reporting systems,
national surveys or registry data (Cho et al, 2019, 2021; Jung
et al.,, 2020; Lee et al., 2010, 2020; Nakanishi et al., 2021; Nakatani
et al,, 2020; Yang et al., 2021; Yokota et al., 2017). Four studies con-
ducted primary research by collecting falls associated data via geriatric
or clinical assessments of older adults, physical and mobility assess-
ments using sensors to detect risk factors and self-reported question-
naires completed by older participants (Beauchet et al., 2018; Greene
et al., 2014; Makino et al., 2021; Rabe et al., 2020). Only one study
used a combination of primary and secondary falls data for analysis
(Agartioglu Kundakgci et al, 2020). The setting for the majority of
included studies was a hospital clinic or hospital-based electronic
medical record (EMR), with one taking place in a care home (Lee
et al., 2020), and one in community centres (Makino et al., 2021).

FIGURE 1 Flow diagram of the
screening process

Records identified from first
search (10/11/21):

CINAHL (n=161); Cochrane
Library (n=54); Embase
(n=99); PubMed (n=810);
MEDLINE (n=888)

Records identified from
second search (05/02/22):
CINAHL (n=13); Cochrane
Library (n=3); Embase
(n=39); PubMed (n=32);
MEDLINE (n=50)

Duplicate records
removed before
screening:

First search (n=122)
Second search (n=64)

!

|

Records screened by title
and abstract
(n=1,890)

Records screened by title
and abstract
(n=73)

Records excluded:
First search (n=1,604)
Second search (n=58)

:

!

Records screened by full-
text
(n=286)

Records screened by full-
text
(n=15)

[ Included ] [ Screening ] [Identiﬁcation]

:

l

(n=14)

Studies included in review

Records excluded:

First search

Not nurses (n=273)

Not falls related (n=2)
Not Al intervention (n=6)
Not empirical study (n=3)
Second search

Not nurses (n=2)

Not empirical study (n=1)
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TABLE 1 Inclusion and exclusion criteria for the review

Inclusion criteria

Population: Older adults (average age 60 years or more) and
mixed populations if older adults comprised the majority
of participants. Nurses also had to be involved in some
aspect of the design or conduct of the research study,
either as participants or members of the research team

Intervention: Any artificial intelligence technique applied to an
area of falls management

Comparison: No comparator was used
Outcomes: All outcomes

Settings: All settings (acute, primary or community care, long-
term/residential care)

Study design: All types of studies designs (quantitative,
qualitative, mixed methods)

Exclusion criteria

Child and adults under 60 years of age

Artificial intelligence techniques or systems that were
simulated, prototyped, not based on real-world datasets,
or where no specific artificial intelligence methods were
described

None

None

None

Timeframe: None, given the recent emergence of artificial intelligence in health care

Publication type: Peer-reviewed articles in English language
journals

Another study used a population health survey dataset from non-
institutionalized adults (Yang et al., 2021) and one included a variety
of settings in primary care (Rabe et al., 2020) (Table 2).

3.1 | Al techniques for falls management in older
adult care

All 14 studies utilized one or more supervised machine learning
methods, predictive algorithms that build mathematical models from a
training dataset that contains variables and outcomes of interest
(Table 2). The algorithm ‘learns’ patterns and relationships within a
dataset to predict an outcome, without being explicitly programmed
(Beam & Kohane, 2018). Three studies employed a decision tree
supervised learning method to calculate the cost of nursing interven-
tions for preventing falls or classify risk factors to predict falls in the
elderly (Agartioglu Kundakci et al, 2020; Makino et al., 2021;
Nakanishi et al., 2021). Greene et al. (2014) and Yokota et al. (2017)
employed a support vector machines model to screen and classify
older adults for falls risk based on a comprehensive clinical dataset.
Two studies used artificial neural networks to predict falls from
10 factors identified via structured data within a nursing incident
reporting database, preselected from a set of 72 based on univariate
correlation with occurrence of falls (Beauchet et al., 2018; Lee
et al., 2010).

Two studies employed Bayesian networks, a graphical model that
denotes probabilistic relationships between variables. Cho et al.
(2019) extracted nursing notes and statements from a hospital EMR
and chart reviews from units with high falls rates to help predict the
risk of inpatient falls using a probabilistic Bayesian network model. In

a follow-up study, this fall prediction analytical tool was integrated

Conference proceedings, dissertations and theses, discussion
and editorial articles, grey literature and literature reviews

into a hospital EMR which generated a 24-h falls risk prediction for
each patient and triggered an ‘at-risk’ alert on the system along with
a care plan of falls interventions prioritized according to patients’
individual risk factors (Cho et al., 2021). Four studies compared a
range of machine learning techniques to determine their predictive
performance for assessing falls risk among older people, with some
comparing them against standardized falls risk assessment tools and
two reported logistic regression had the highest predictive perfor-
mance (Jung et al., 2020; Lee et al., 2020; Rabe et al., 2020; Yang
et al., 2021). Finally, Nakatani et al. (2020) was the only study that
used natural language processing in conjunction with a specially
designed machine learning algorithm called Concept Encoder, employ-
ing morphological analysis to determine meaning in language, to help
predict inpatient hospital falls from unstructured nursing records.

3.2 | Nurses’ involvement in Al research for falls
management

The level of nursing involvement in Al research to help manage falls in
older adults varied. In eight studies, nurses were the lead researcher
or lead author (Agartioglu Kundakgi et al., 2020; Cho et al., 2019,
2021; Jung et al., 2020; Lee et al., 2010, 2020; Nakanishi et al., 2021;
Yang et al., 2021), while four studies were led by other scientific
disciplines including medicine, computer science, health economics
and health information management. Two studies were directed by
commercial companies, a pharmaceutical enterprise and a technology
company that specialized in Al motion analysis. Only one study was
co-led by two scientific faculty from both nursing and information
science (Nakanishi et al., 2021) and two studies included nurses as

part of the research team, where they participated in conceiving,
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TABLE 2

Study design, setting, data

collection

Al techniques Results/outcomes

Participants

Research aim(s)

Author, year, country, lead

Study design: quantitative—not Numbers: 1950 cases of falls Support vector machines The model showed clear

To create a system to assist

Yokota et al. (2017), Japan,

sensitivity and specificity

model used for training the
data (all features were

used)

were identified (0.16%)
Type: remaining 1,221,737

explicitly reported
Setting: hospital EMR

nurses in evaluating the fall

risk of patients and to

Lead author: health care

toward unknown data and

determined whether a
patient will fall on the

information management

faculty

cases being nonfalls

(99.84%)
Gender: 51.5% males and

Data collection: secondary—

evaluate the fall risk of a
certain day using the

intensity-of-nursing-care-

following day by using their

status and other

needs data and patients’
hospital admission or

patient’s status, attributes

48.5% females
Age: average age of 62.4 years

and location information on

that previous day.

information on the current

day. Using this model,

discharge movement data

for general hospital wards,

data on patients’

nurses in charge may be
able to determine the
degree of fall risk

characteristics and

activities, data from

objectively, without having
to spend time gathering

new information.

admitting hospital ward and
fall report data from an

incident reporting system.

Note: Al, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; BRFSS, Behavioral Risk Factor Surveillance System; Cl, confidence interval; EMR, electronic medical record; FTSS, five

times sit to stand; HIIFRM, Hendrich Il Fall Risk Model Validation; ML, machine learning; NLP, natural language processing; NPV, negative predictive value; PPV, positive predictive value; RF, random forests; SD,

standard deviation; SVM, support vector machines; ROC, receiver operating characteristic; TUG, timed up and go.

designing and conducting the experiments and writing the scientific
manuscript (Beauchet et al., 2018; Yokota et al., 2017).

In four cases, nurses were actively involved in collecting the falls
dataset used in the research. In Beauchet et al. (2018), nurses in a
hospital undertook routine assessments with older inpatients covering
medication, mobility, cognitive impairment, informal carer and social
services, along with falls history and falls risk, as well as recording falls
incidents. Similarly, in Greene et al. (2014), a comprehensive geriatric
assessment was undertaken by nurses at a hospital clinic, which
included visual acuity and visual contrast sensitivity tests, blood pres-
sure and maximum grip strength measurements, balance and mobility
tests using inertial sensors and an examination of frailty status. Nurses
also assisted in Makino et al. (2021) by assessing falls in older persons
via a baseline and follow-up survey, approximately 48 months later,
while also investigating prescribed medications and medical history,
and measuring gait speed and timed up and go. Lastly, nursing staff in
Rabe et al. (2020) conducted a fall-risk assessment where mobility
was captured via video and followed by an in-depth questionnaire
completed via a smartphone application.

One study did not involve nurses directly but used secondary
data from nursing records in an EMR which included patient state-
ments, nursing observations and vital signs, nursing assessments,
medical treatments, medication administration, patient messages and
other comments from nurses were also used (Nakatani et al., 2020).
Interestingly, Cho et al. (2021) was the only study where nurses in
clinical practice used an Al-based system across six hospital units for
real-world clinical validation. The Al-based fall prediction tool was
trialled alongside a standardized falls risk assessment to determine
which was more accurate in identifying older patients at risk of falling
and to encourage nurses to implement falls prevention strategies, with
the intervention group implementing more falls risk targeted interven-
tions. While the other 13 studies utilized real falls related data to train
and test predictive algorithms, these were not implemented in an
Al-based tool/system that nurses could use to inform decision making

and the delivery of older adult care.

4 | DISCUSSION

This review synthesized evidence on nurses’ involvement in Al
research for managing falls in older adults. It found that machine
learning techniques were the most common method used, primarily to
identify factors that could more accurately predict falls in older adults,
and in some cases compared these to standardized falls risk assess-
ment tools. The widespread use of machine learning in falls research
has been reported (Usmani et al., 2021), although natural language
processing, fuzzy logic, computer vision and other Al techniques are
starting to be utilized more (O’Connor et al., 2022). Some research
also suggests that logistic regression can perform just as well as
machine learning for clinical prediction models (Christodoulou
et al., 2019). Furthermore, the studies in this review noted some com-
mon limitations when using Al such as datasets with missing or incom-

plete falls related information, often from one source organization
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Location of included studies

FIGURE 2

within a particular geographic region and short timeframe, which
could impact the quality of predictive models. These issues have been
widely reported in Al literature (Bates et al., 2021). Hence, Al
approaches used in managing falls in older adults needs further
exploration, alongside developing longitudinal datasets that are as
comprehensive as possible, to help build robust predictive models
with clinical utility.

This review also highlighted that most studies only reported the
potential of Al to improve falls prediction, with only a single study
deploying an Al analytical tool with nurses in a hospital to help iden-
tify at-risk older adults. Many studies have taken a similar approach to
developing algorithms (Bargiotas et al., 2021; Usmani et al., 2021),
without moving beyond assessing their predictive performance to
examine if and how they could fit into care pathways and be
interpreted by clinicians to inform decision making and the care
delivery. Furthermore, no study in the review examined how Al could
be utilized to identify and support an older person who experienced a
fall, through the use of physiological or environmental sensors or
other integrated systems such as smart homes. There is a growing
literature in the engineering and computer science fields addressing
this (Bet et al., 2019) which nurses should be cognisant of and become
involved in.

The review findings also emphasized that nurses are leading some
Al research for falls management in older adults but other professions
such as medicine, computer science and engineering are also active in
this field, and multidisciplinary collaborations are common, which is
mirrored by other reviews of Al in nursing (Ng et al., 2021; O'Connor
et al., 2022; von Gerich et al., 2022). Ronquillo et al. (2021) recom-
mend nurses become more active in Al initiatives in health care to

ensure these approaches are developed and applied appropriately,

Location of included studies (using https://mapchart.net/)

Croatod with mapchart.nol

with practical and clinical utility in mind. Education and training may
be required to upskill nurses in areas of informatics such as Al (Booth
et al,, 2021), so they can participate and lead this type of research,
facilitate the collection of falls related digital datasets and use

Al-based technologies in their practice to enhance older adult care.

41 | Strengths and limitations

The review was strengthened by using an open access platform to
register the planned research, employing a rigorous database
search, screening studies using independent reviewers and utilizing
international best practice guidelines to improve the transparency and
reporting of the review. However, as the search terms focused on the
nursing profession specifically, other literature from computer science,
engineering and related fields that are developing and testing Al
techniques for falls management were not included. In addition,
alternative sources of scientific studies such as conference proceed-
ings, theses, pre-print and discursive articles were not included which
may limit the comprehensiveness and utility of the review findings
somewhat. Critical appraisal of the included studies was not
conducted, so the methodological quality and the overall weight of
evidence in this area remain largely unknown. Therefore, the results

of the review should be interpreted with caution.

5 | CONCLUSION
As ageing societies become commonplace, the risk of and impact from
falls among older adults will continue to grow, making Al research on

falls management an important area that the nursing profession
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should contribute to. This review highlighted how nurses have partici-
pated to date in is emerging research area, along with the potential
that Al techniques have in identifying relevant risk factors and build-
ing predictive models that could be used by nurses to manage falls
among older people. While the evidence base is preliminary, there are
some early indications that developing and testing Al could lead to
more robust predictive analytical systems that support improvements

in gerontological nursing practice and patient care.

6 | IMPLICATIONS FOR NURSING
MANAGEMENT

Several key implications emerged from the review findings. First, more
rigorous experimental research is needed to determine how effective
Al techniques are in predicting aspects of falls in older adults and the
impact these models have on nurses’ decision making and the delivery
of personalized care. More implementation science that examines
how to deploy Al-based technologies with nurses who care for older
adults across a range of acute and primary care settings could
facilitate a better understanding of whether these predictive tools
have practical and clinical utility in assessing and managing falls.
Second, nurses should pursue interdisciplinary collaborations in Al
research for managing falls to harness a range of expertise, ensuring a
holistic approach to supporting older people is taken. Third,
educational opportunities should be created for nurses to learn about
machine learning, natural language processing and Al more generally,
so the profession has knowledge and skills to participate and lead Al
research that facilitates older adult care. Fourthly, more digital
datasets of falls risk factors or conditions that lead to an actual fall in
ageing populations could be created to support future Al research.
This would help ensure algorithms being developed and tested have
rich data from which to build predictive models that accurately reflect
the real life of older adults, enabling nurses to improve the manage-

ment of falls in this key patient group.
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